Hatchery Talks In-ovo vaccination and hatchery management

Hatchery Talks

Before we start ...

- Polls
- Questions

Hatchery Talks

Contents

- Why in-ovo vaccination
- Critical succes factors
- Implications for hatchery management

In-ovo vaccination Why

Definition of in-ovo vaccination

Procedure to deliver a vaccine inside the egg with an embryo in the late stage of development, targeting specific sites where the vaccine is capable of stimulating an immune response.

`Mass vaccination of individual embryos'

In-ovo vaccination, why

In-ovo vaccination as alternative

Why in-ovo vaccination

- Excellent alternative for farm vaccinations
- Excellent alternative for day-old vaccinations
- Earlier protection/better disease prevention
- $_{\circ}$ Less stress → better immunity
- Few people involved (training; biosecurity)
- High capacity (upto 60.000 eggs/hour)
- If done correctly: better application of expensive vaccine
- More and more vaccines available; even combinations (HVT + ND + IBD)

In-ovo vaccination Critical succes factors

Objectives of in-ovo vaccination

Good immune response

- Correct site of injection
- Vaccine

No reduction of hatchability

- Not kill embryo
- No contamination

Five interacting factors determine success:

- 1. Egg location
- 2. Shell penetration
- 3. Site of injection
- 4. Vaccine delivery
- 5. Sanitation

Note: Not all will be discussed in detail; relation with hatchery management is the main topic of this presentation

Five interacting factors determine success:

- 1. Egg location → related to egg setting and setter tray
- 2. Shell penetration
- 3. Site of injection → related to embryo age + uniformity
- 4. Vaccine delivery
- 5. Sanitation → related to egg & hatchery hygiene

Note: Not all will be discussed in detail; relation with hatchery management is the main topic of this presentation

Site of injection is very crucial

Correct:

- Embryo (SQ/IM)
- Amniotic sac

Wrong:

- Air cell
- Allantois sac
- Yolk sac

Site of injection is very crucial

Correct:

- Embryo (SQ/IM)
- Amniotic sac

Wrong:

- Air cell
- Allantois sac
- Yolk sac

Site of injection & optimal timing

- Embryo should be in position to hatch (head under right wing)
- The stalk of yolk sac should be entering the abdomen
- Maximum of 1 2 % external pipping

Ř

Site of injection & optimal timing

- Embryo should be in position to hatch (head under right wing)
- The stalk of yolk sac should be entering the abdomen
- Maximum of 1 2 % external pipping
- 1. Optimal incubation time?
- **2.** Is this $=/\neq$ to embryo age?

Site of injection & embryo stage

Vaccination window: 17¹/₂ - 19¹/₄ days of incubation **More important:** Embryo Development Stage Score

Site of injection & embryo stage

- Vaccination window: 17¹/₂ 19¹/₄ days of incubation
- More important: Embryo Development Stage Score

Site of injection & embryo stage

Head position / IP / EP

Head-under-wing (1 point)

Internal pipping (2 points)

External pipping (3 points)

Site of injection & embryo stage

Yolk sac absorption rate

Stalk/intestines (1 point)

Bi-lobe (2 points)

No bi-lobe (3 points) Absorbed (4 points)

Photo courtesy of Zoetis

Examples embryo stage

R

Stage 3:

Stage 6:

Site of injection & embryo stage

- **Vaccination window:** 17¹/₂ 19¹/₄ days of incubation
- **BUT:** Embryo Development Stage ≥ 3!!!

In-ovo vaccination Implications for hatchery management

- Egg & hatchery hygiene (needle design and sanitation also important!)
- Egg grading & position
- Uniformity of development

Egg and hatchery hygiene

The vaccination hole in the egg is a breach in its defence system!

- Risk for air borne infection
- Fungus (Aspergillus)
- Bacteria from humidifiers
- Exploders during transfer

Aspects of egg hygiene

Aspects of hatchery hygiene

3 main aspects

- Vector management
- Avoid cross contamination
- Cleaning and disinfection

Egg grading & position

- Only clean eggs!
- No hair cracks!
- Sharp end down!
- Well-supported

What if egg is incubated like this?

Ľ	(1111)	
$\left(\right)$)
\mathbb{N}	(a)	1
	IJ	r

	Age			Number		Hatch	Fertility					
Flock	of			of Set		ability	(Real)	H.O.F	Diff.	0-7	8-18	19-2
(May.2016)	Flock	Group	Treatment	Eggs	Chicks	%	%	%	(HOF)	%	%	%
Cobb	41	Trial	Up Side Down	300	230	76,7	97,0	79,0	-16,0	3,7	9,3	3,
		Control	Normal	300	281	93,7	98,6	95,0		0,8	0,3	0,
Ross 308	39	Trial	Up Side Down	300	221	73,7	94,3	78,1	-13,0	3,3	4,7	8,
		Control	Normal	300	265	88,3	97,0	91,1		1,3	1,3	2,
Ross 308	49	Trial	Up Side Down	300	209	69,7	93,3	74,6	-12,7	3,7	3,0	9,
		Control	Normal	300	261	87,0	99,6	87,3		0,3	0,9	0,
Ross 308	31	Trial	Up Side Down	300	223	74,3	94,7	78,5	-16,7	4,3	1,3	9,0
		Control	Normal	150	140	93,3	98,0	95,2		4,0	0,7	1,:
Ross 308	35	Trial	Up Side Down	300	229	76,3	97,3	78,4	-16,8	4,3	0,0	15,
		Control	Normal	300	277	92,3	97,0	95,2		2,3	0,0	1,:
Hubbard	54	Trial	Up Side Down	300	191	63,7	86,7	73,5	-15,8	2,3	0,3	18,0
		Control	Normal	300	241	80,3	90,0	89,3		2,7	0,3	5,3
Hubbard	53	Trial	Up Side Down	300	194	64,7	91,3	70,8	-21,0	3,0	0,3	18,
		Control	Normal	300	256	85,3	93,0	91,8		1,7	2,3	1,

With in-ovo vaccination much worse/even lower!

Uniformity of development

Incubation time =/≠ embryo age?

- Post-lay cooling profile
- Egg storage time
- Breed
- Egg size
- Heat-up time
- Incubation temperature
- Etc...

Post-lay cooling profile

Speed of cooling-down 41 \rightarrow < 25 °C determines embryo-stage at start incubation

Effect of egg storage

Embryo stage 3 approx. at 18 days of incubation ... but what if eggs have been stored for > 10 days?

Embryos after 2,5 days of incubation

stored 14 days

stored 4 days

stored 14 days

Heating of eggs during storage

Aim: Minimize negative effect of egg storage (Hatchability / Chick quality / Incubation time)

Uniform development in setter

Homogeneous incubation temperature

Uniform development in setter

Fast & uniform heat-up time \rightarrow **pre-heating**

Uniform development in setter

Heating – cooling – air flow

Uniform development in setter

Minimize activity of humidifiers = cold spot

Climate requirements

Uniform development in setter

Incubation profile

Ŕ

In-ovo vaccination Summary

Hatchery Talks

In-ovo vaccination

An excellent way of mass-application of vaccines to individual embryos for early disease protection

- Critical succes factors have to be taken seriously
- Hatchery management might have to be optimized

Hatchery Talks

Thanks for watching!

Webinar-replay + hand-out

Knowledge section at our website

See you at our next webinar

