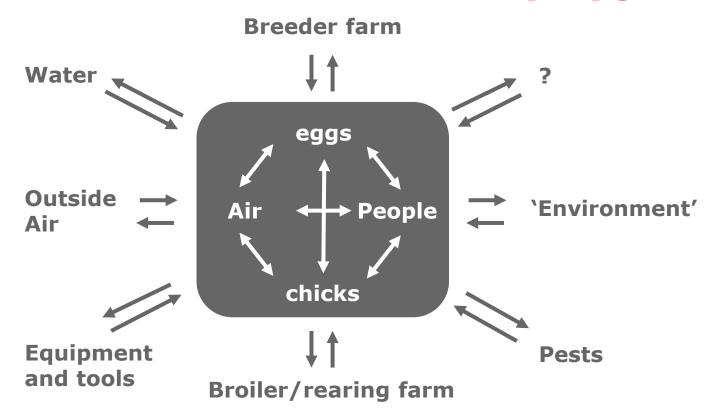
Hatchery Talks Formaldehyde-free hatching egg disinfection

Before we start ...

- Polls
- Questions in chat
- Webinar-replay + hand-out

Contents


- Introduction
- Disinfecting eggs with formaldehyde
- Looking for alternatives
- Summary

Hatchery Talks Introduction

Vector control for hatchery hygiene



Introduction

Bacteria on egg shell

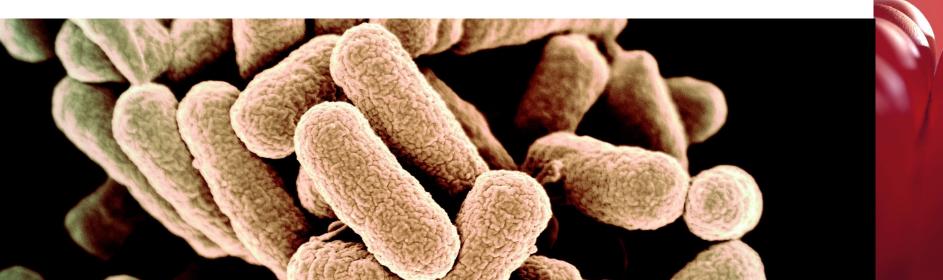
- At time of laying: 300 500
- One hour later: 20,000 30,000
- Dirty egg: upto 80,000
- Typical contaminants:
 - Micrococcus, Salmonella, Pseudomonas, E.coli
 - but also various types of moulds

Source: review by S. Cadirci, 2009

Hatching eggs

Hatching eggs → main source of pathogens

- Are you setting floor eggs?
- Do you accept dirty eggs?
- Do you check for hair line cracks?
- Are you preventing 'egg sweating'?



Introduction

Poll

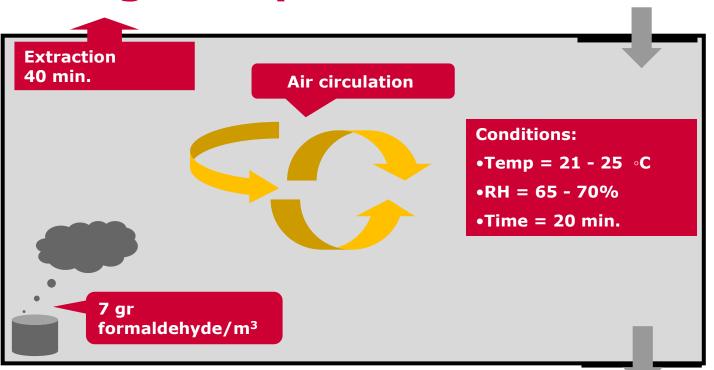
Are you disinfecting hatching eggs prior to setting? When/Where?

Hatchery Talks Hatching egg disinfection with formaldehyde

When/frequency?

- Directly after egg collection
- At reception in the hatchery
- Just before placement in the setter
- Avoid recontamination
- Never during first 4 days of incubation in case of formaldehyde!
- Too frequent within short time span affects hatchability

Desinfectant?


- Paraformaldehyde commonly used
- Paraformaldehyde + H₂O = formalin (37 - 40 %)
- Application method:
 - Per m³: 7 gram formaldehyde in electric pan
 - Per m³: 30 cc formalin poured on top of 20 gram KMnO₄

Fumigation procedure

Egg traying room

Paraformaldehyde

Advantages	Disadvantages
Effective and no resistance	Unhealthy (carcinogenic)
Easy to apply	Unpleasant labour conditions
Not corrosive	Environmental hazard
Cheap	Legislation?

Formalin Neutralisation Unit

- For better labour conditions
- Per m³: 15 ml ammonia (25%)
- Formalin +ammonia → Hexa Methylen

Tetramine

Poll

Are you using paraformaldehyde for hatching egg disinfection?

If not, please let us know in the chat what else you are using

Hatchery Talks Formaldehyde-free hatching egg disinfection

Alternative chemicals

Requirements

- Safe to use (people, material, environment)
- No negative effect on hatchability and chick quality
- Good disinfection results
- Easy to apply
- Reach entire surface
- Sufficient capacity
- Price?

Alternative chemicals

Examples (active components)

- Quaternary ammonium (+ glutaraldehyde)
- Peracetic acid + hydrogen peroxide (PAA + H₂O₂)
- Products based on organic fruit acids
- Electrolyzed Oxidizing Water (H₂0+NaCl+electricity)
- (Ozon)
- (UV-light)
- (Novel products)
- •

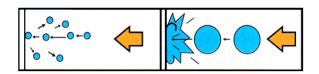
Application method

How to get the liquid chemical on the egg?

- Unlike formaldehyde cannot be applied as gas
- Other options available:
 - Spraying
 - Fogging
 - (dipping/washing)
- Requires:
 - Good technology
 - Correct dosing

Spraying

Big droplets: tray-by-tray or trolley-by-trolley?



'Cold' fogging

Small droplets

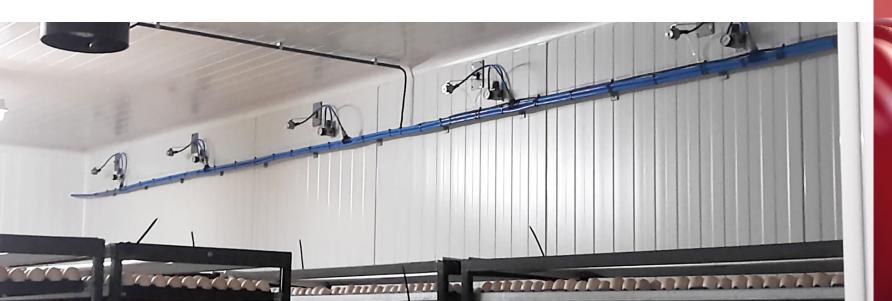
Often (part of) droplets too big for good distribution

Thermal and ultrasonic fogging

Very small droplets

Good distribution, however:

- Maintenance & reliability
- Not suitable for all disinfectants
- Capacity in relation to size fumigation room



'Dry' fogging

Droplets 5 – 10 micron for optimal distribution

- room is filled with a 'cloud' → all eggs slightly damp
- works well in existing fumigation rooms

Procedure 'dry' fogging

Very small droplets: 5 – 10 micron

- Fogging device on compressed air
- Applicable in existing fumigation rooms
- Procedure max. 1 hour
 - 15 minutes fogging
 - 30 minutes contact time
 - 15 minutes extraction

Correct dosing

- Water as carrier
 - Enough to cover all eggs
 - Use more nozzles if it takes too long
- Concentration depends on application method
 - Spraying: 0.3 0.5 %
 - 'Dry' fogging: 5 33 %
- Risk of bad dosage → measure precisely!
 - Under-dosage: low killing rate
 - Over-dosage: risk for low hatchability
- Monitor for left-overs and results

Before calculating 'dry' fogging

Objectives:

- 1. 2 3 (max. 5) ml active ingredient /m³
- 2. 15 max. 30 ml liquid/m³ (covering all eggs without excessively wetting them)
- 3. 15 minutes fogging time

Considerations:

- Lower concentration → need more ml liquid/m³ → risk for overly wet eggs
- In case of quats better to use low concentration (and low dosage) to minimize risk of closing off the pores in eggshell

Calculation for 'dry' fogging

Assumption:

30% H₂O₂

Dilute 30% → before use

Example:

- 700 ml water
- 300 ml product

Liquid 9% H₂O₂(ready for 'dry' fogging)

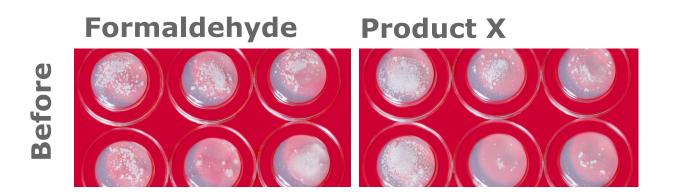
Calculation for 'dry' fogging

Objective 1. Total liquid (15–30 ml/m³)

Assume 30 ml

Objective 2. Active ingredient (2–3 ml/3)

30 ml of 9% $H_2O_2 = 2.7$ ml

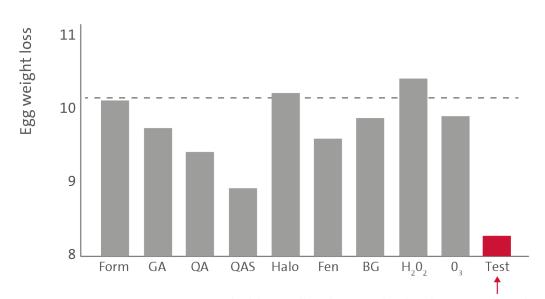


Objective 3. Fogging time (15 minutes)

If 1 nozzle = 2.4 liters/hour (= 600 ml/15 minutes) $30 \text{ ml/m}^3 = 600 \text{ ml/20 m}^3 \rightarrow \text{use 1 nozzle/20 m}^3$

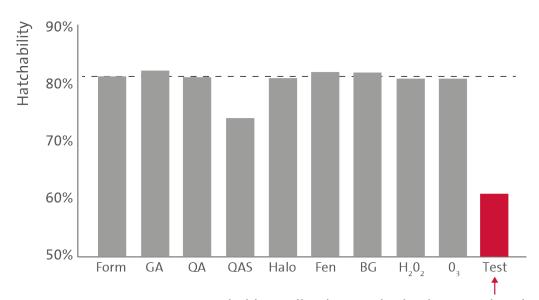


Monitoring disinfection results


Monitoring disinfection results

Monitoring other effects

% weight loss 0 – 18 days after disinfection with different active components


Probably application method + dosage related

Monitoring other effects

Hatchability after disinfection with different active components

Probably application method + dosage related

Safety first!

- Read the label
- Understand the dangers
- Protect yourself

Hatchery Talks Summary

Summary

 Hatching egg disinfection is not the solution for poor egg hygiene!

Summary

- Hatching egg disinfection is not the solution for poor egg hygiene!
- There are alternatives to formaldehyde for hatching egg disinfection

- Hatching egg disinfection is not the solution for poor egg hygiene!
- There are alternatives to formaldehyde for hatching egg disinfection
- These need to be applied properly

- Hatching egg disinfection is not the solution for poor egg hygiene!
- There are alternatives to formaldehyde for hatching egg disinfection
- These need to be applied properly
- Monitor the effects

Thanks for watching!

- Webinar-replay + hand-out
- Knowledge section at our website

See you at our next webinar!

Royal Pas Reform

Pas Reform

@Pasreform

Royal Pas Reform

@Pasreform

Flickr.com/pasreform

Youtube.com/pasreformbv

