Hatchery Talks Hatchery Ventilation & Climate Control

Hatchery Talks

Before we start ...

- Polls
- Questions

Hatchery Talks

Contents

- Introduction
- Sufficient air
- Good conditions
- Correct place

Hatchery Talks Introduction

Requirements for incubation

5 fundamental requirements

- 1. Temperature
- 2. Humidity
- 3. Turning
- 4. Oxygen
- 5. Hygiene

Requirements for incubation

4 linked to Hatchery Ventilation & Climate Control

- 1. Temperature
- 2. Humidity
- 3. Turning
- 4. Oxygen
- 5. Hygiene

What is hatchery ventilation?

Bringing sufficient air of good conditions to the correct place (+ exhaust `used' air)

- 1. Sufficient air
- 2. Good conditions
- 3. Correct place

Focus on setters & hatchers

For this Hatchery Talks we neglect other rooms in the hatchery like egg storage room and chick despatch room

Hatchery Talks Sufficient air

Ventilation for O₂-supply

 O_2 = essential $CO_2 + H_2O =$ waste products from embryo metabolism

Exponential increase during incubation

After Romanoff A.L. 1960: The Avian Embryo

How much air is needed?

Theoretical calculations based on CO₂

Starting points:

- RQ-value $CO_2/O_2 0.67$
- Heat production 18th day 0.15 W/egg (Nangsuay et al, 2015)
- Fertility 95%

At day 18 for 124.416 eggs (162/16)

Amount of air depends on set point of CO₂

Max CO ₂ (ppm)		CO ₂ inlet (ppm)	CFM/ setter	CFM/section	CFM/1000 eggs
	4000	500	368	61	2.9
	3000	500	515	86	4.1
R	2500	500	644	107	5.2
	2500	700	715	119	5.8
	2500	900	805	134	6.5
	2000	700	991	165	8.0

At day 18 for 124.416 eggs (162/16)

"Clean air helps!"

Max CO ₂ (ppm)	CO ₂ inlet (ppm)	CFM/setter	CFM/section	CFM/1000 eggs
4000	500	368	61	2.9
3000	500	515	86	4.1
2500	500	644	107	5.2
2500	700	715	119	5.8
2500	900	805	134	6.5
2000	700	991	165	8.0

Calculating capacity AHU

At max. ventilation:

- Setters: 120 CFM/section = approx. 6 CFM/1000 eggs
- Hatcher: 265 CFM/hatcher = 13 сFM/1000 еддя
- Setting schedule
- Also for other rooms?
- Extra for leakage!

Hatchery Talks Good conditions

Climate requirements inlet air setter and hatcher

Temperature	Humidity		
	RH	Dew point	
21 – 27 °C	< 70 %	11 – 19 °C	
69.8 – 80.6 °F		51.8 – 66.2 °F	

npany Psychrometric Chart, www.linric.com

DRY BULB TEMPERATURE - °F

Why these climate boundaries?

- Too cold: low uniformity of temperature
- Too warm: too much cooling by water
 → condensation
- **Too dry:** cold spot due to active humidifiers
- Too wet: low egg weight loss
 → poor chick quality and hatchability
- RH > 70 %: risk for fungal development (Aspergillus)

Does external climate match?

Aspects of external climate

Mainly temperature and humidity:

- Seasonal changes?
- Day night rythm?
- Average or extremes?
- Location weather station versus location hatchery?
- Altitude?

Remember ... your hatchery is in operation 24/7 – 365 days!

Air Handling Unit

What does it do:

- 1. Moves air
- 2. Filters
- 3. Heats and/or cools
- 4. De-humidifies
- 5. (Humidifies) \rightarrow final step of AHU?

npany Psychrometric Chart, www.linric.com

DRY BULB TEMPERATURE - °F

Climate C: 30 °F / 70 %RH

Energy-efficient choice of set 25 points AHU

npany Psychrometric Chart, www.linric.com

DRY BULB TEMPERATURE - °F

Climate D: 90 °F / 70 %RH

npany Psychrometric Chart, www.linric.com

DRY BULB TEMPERATURE - °F

Climate C: 30 °F / 70 %RH

Climate D: 90 °F / 70 %RH

Optimal set points depends on season

npany Psychrometric Chart, www.linric.com

DRY BULB TEMPERATURE - °F

AHU, what does it do? Heating - cooling

Ř

AHU, what does it do? Cooling - heating = dehumidifying

AHU, what does it do? Heating – cooling - heating

Heat recovery can be used for 1st heating step

Good conditions **Filter and AHU**

HEPA filter = High Efficiency Particulate Air filter.

Options for humidification

Hatchery Talks Correct place

Correct place

Transport of air

From Air Handling Unit to:

- Inlet setters / hatchers
- Other rooms like chick handling room

And taking used air out of hatchery:

- Yes/no recirculation? (fungus, CO₂, temp./%RH)
- Energy in exhaust air?

Correct place

Pressure differences

Pressure differences needed for:

- Hygiene ("clean to dirty")
- To facilitate setters and hatchers to 'breath' well

Correct place

Pressure differences

Air pressures needs to be well balanced & controlled!

Correct place Setter airflow

<<u>()</u>>

Correct place Hatcher airflow

Clean air transport through piping

Correct place Uniformity of air distribution

Setters with inlet from corridor

Correct place Uniformity of air distribution

Setters with 'inlet box' (clean air plenum)

Correct place Uniformity of air distribution

Taking out used air from setter to attic

Correct place Uniformity of air distribution Taking out used air from hatcher to fluff tunel

Hatchery Talks Summary

Summary What did we discuss?

- Hatchery ventilation is bringing sufficient air of good conditions to the correct place (+ exhaust `used' air)
- Conditioning air is expensive

Summary

Cost-efficient hatchery ventilation

- Choose optimal set point for AHU
- Do not waste 'expensive air':
 - Keep doors closed
 - Replace bad door seals
 - Do not over-ventilate setters and hatchers

Summary

Let's close the door ... and save money!

Hatchery Talks

Thanks for watching!

- Webinar-replay + hand-out
- Knowledge section at our website

See you at our next webinar