Hatchery Talks Hatching egg quality

Before we start ...

- Polls
- Questions in chat
- Webinar-replay + hand-out

Contents

- Breeder farm
- Internal quality
- External quality
- Egg handling

Hatching egg quality

Poll

By how much, in percentage, do you think that hatching results (hatchability) are influenced by the egg quality at the start of incubation?

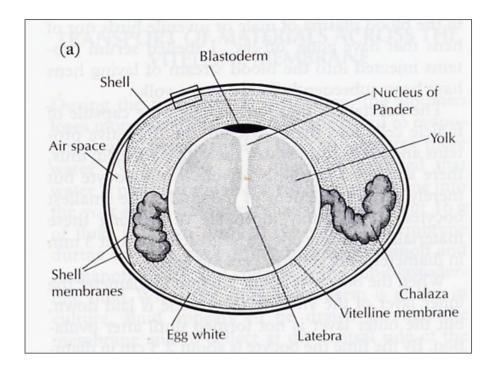
Hatching egg quality

Poll

"Hatch results (hatchability and chick quality) depends on hatching egg quality at the start of incubation"

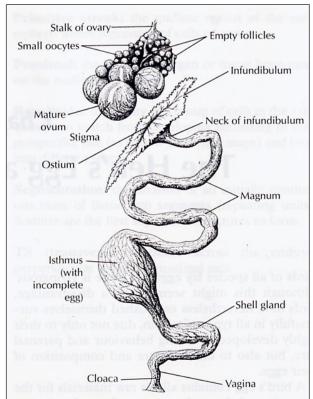
Hatching egg quality

Good quality hatching egg


External aspects	Internal aspects	Other aspects
Shell: intact, smooth and clean	Fertile	Nutrition breeder → embryo (positive and negative)
Size: uniform weight, not too big or too small	Embryo at optimum stage of development	Free of diseases (Samonella spp, Mycoplasma spp, etc.)
Shape: oval, sharp end downwards	"Fresh" and properly stored (yolk, albumen, embryo)	Maternal antibodies
	Meat and blood spots	Heredity (sexing errors)

Hatchery Talks Breeder farm

The Hatching egg


- 60% yolk
- 30% albumen
- 10% shell

Maternal origin of basic nutrients

- Yolk (ovary)
- Albumen proteins (magnum)
- Shell membranes + water (isthmus)
- Shell (shell gland)

Egg formation

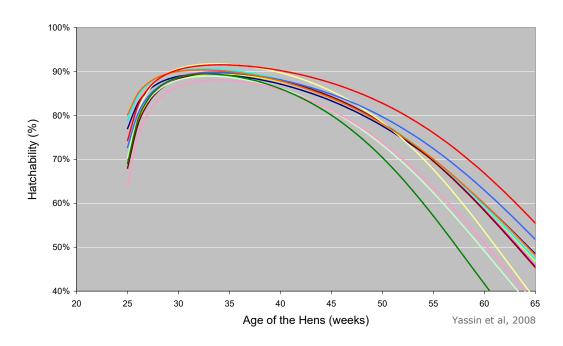
Ä

Oviduct	Event	Time spent
Ovary	Ovulation	0 h
Infundibulum	Fertilization + addition of thick albumen	15 min
Magnum	Albumen (thin) added	3 h
Isthmus	Shell membranes added	1.5 h
Shell gland	Shell added	20 ± 2 h

Egg quality depends on:

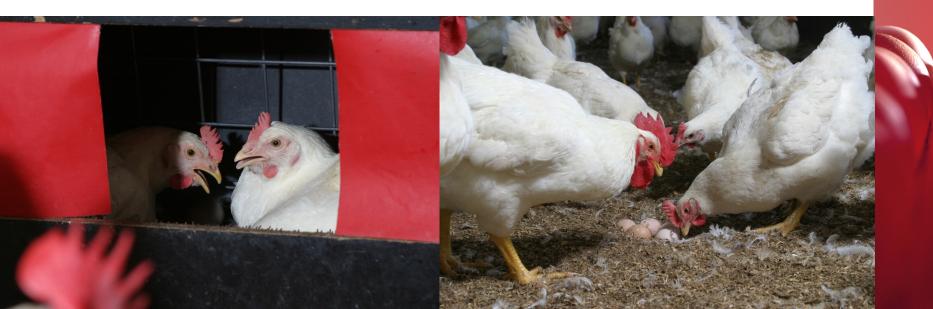
- Breeder farm management
- Flock age
- Nutrition
- Health status
- Egg handling
- Egg storage

Fertility

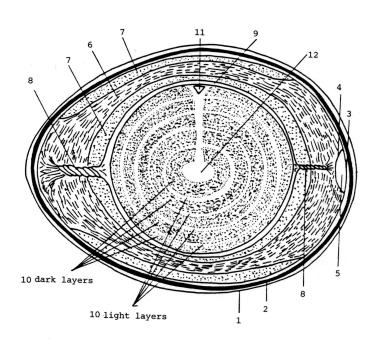


Breeder Farm

Feed


Difference in hatchability curves between different feed companies

Nest quality



Defence mechanisms

Cuticle

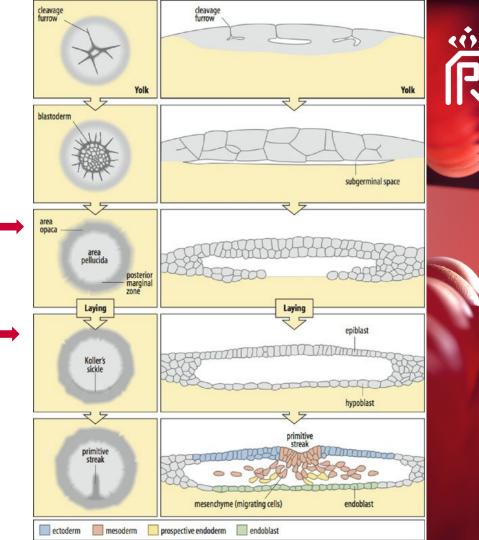
- Shell with pores (hair line cracks)
- Outer and inner shell membrane (delay, not prevent)
- Thick albumen
 (lysozyme and alkaline
 environment)

Breeder Farm

Egg collection

Cooling down of eggs

- Development stops at room temperature (20-22 °C)
- This cease of development means that the embryo entered a period of diapause.
- Development continues when the temperature increases



Breeder Farm

Embryonic stage

Embryonic stage at oviposition

Embryonic stage after cooling to room temperature

Storage conditions at breeder farm

- Cooling down in 6 hours to < 25°C
- In storage room 18 21°C; relative humidity (60) - max. 85 %

Transport of eggs

- Avoid "sweating"
 During loading and transport, temperature in the truck equal or lower than farm store + low RH%
- Road

Hatchery Talks Internal quality

Quality is subjective, different opinions

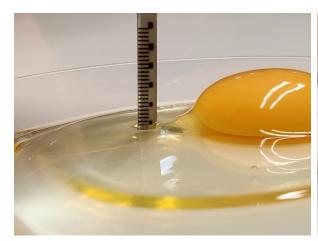
Some factors can be scored objectively:

- Embryo: diameter
- Air cell: depth
- Albumen: Haugh units (height)
- Yolk: color

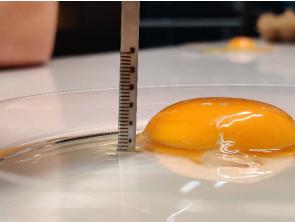
The unincubated fertile and infertile egg

Air cell

Fresh egg with a small air cell



Long stored egg with a big air cell

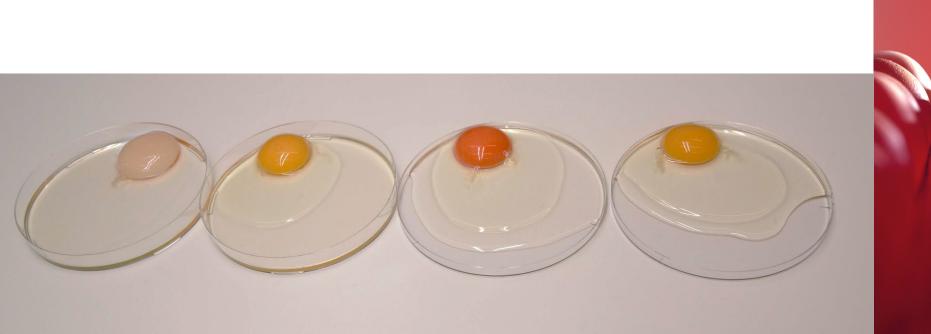


Haugh unit

The haugh unit is calculated based on egg weight and albumen height

Thick and firm albumen of a fresh egg

Weak & watery albumen of a long-stored egg


Poll

Yes or no. The color of the egg yolk says something about the quality?

Yolk color

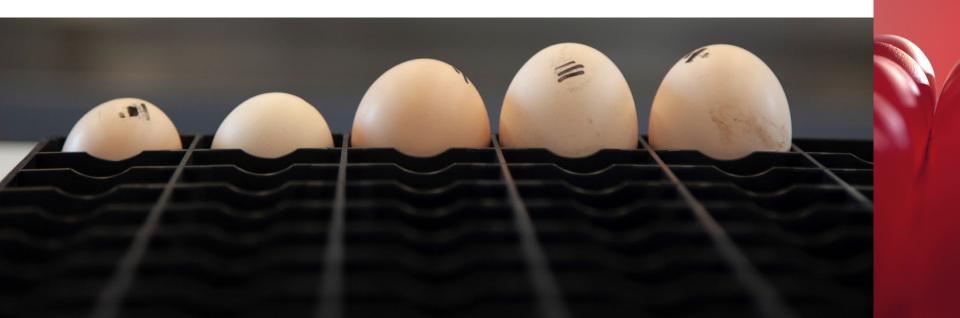
Recording forms

Recording Form 8B: Internal hatching egg quality upon receipt

Egg ID-code	Breed	
Production date	Maternal age	
Date of receipt	Date of quality control	

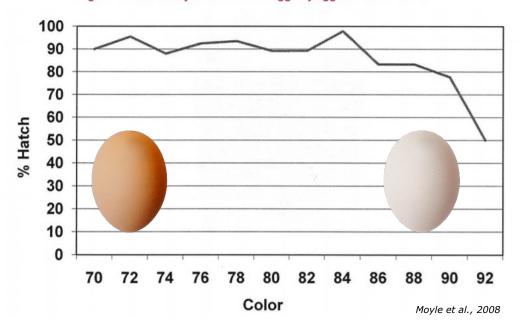
Category	Number of eggs within		
	Sample of 10 eggs	Additional 20 eggs	
Air cell depth > 2 mm			
Albumen thin and watery			
Yolk - Flabby and flat - Very pale colour - Mottled			
Blood- or meat spots			
Total			

Hatchery Talks External quality


External quality

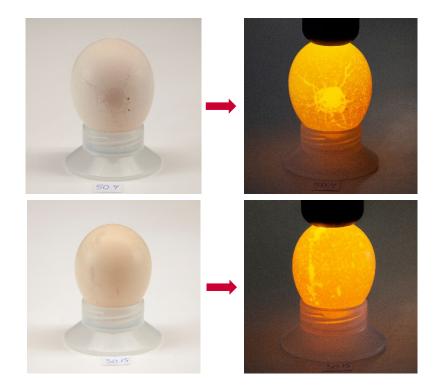
- Quality is subjective -> different opinions
- Some factors can be scored objectively
 - Weight: uniformity
 - Shell color
 - Malformity and cracks
 - Dirty eggs

External quality


Uniformity

Shell colour and hatchability

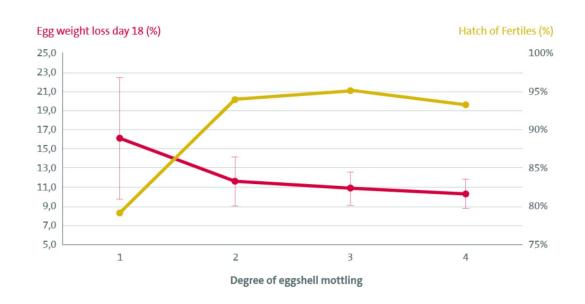
Figure 1. Hatchability of commercial eggs by egg shell color code.

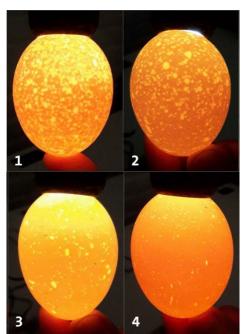


Cracks and holes

Poor shell quality or rough egg handling?

External quality


Malformities



Mottled shells and hatchability

External quality

Dirty eggs

- Floor eggs
- Dirty eggs
- Sweating eggs

External quality

Faa ID-code

Total

Recording form

Recording Form 8A: External hatching egg quality upon receipt

	Breed	
	Maternal age	
	Date of quality control	
Number of eggs		% of sample
	Number of eggs	Maternal age Date of quality control

Hatchery Talks Egg handling

Egg handling

- Egg disinfection
- Storage
- Heat treatment

Egg disinfection

- There are a lot of micro-organisms on the surface of the eggshell.
- Micro-organisms can have detrimental effects on hatchability and chick quality.
- It is essential that the eggs are disinfected prior to incubation.

Contaminated hatching eggs

External

- Dirty eggs
- Visual clean eggs

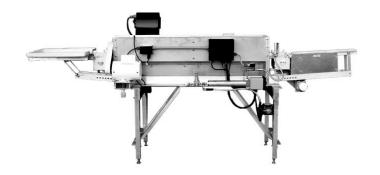
Internal

- External → internal
- Vertical transmission

Hygiene

Contaminated hatching eggs may result in:

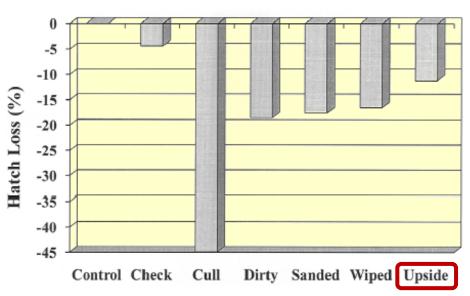
- Increased embryonic mortality
- Exploders → further contamination
- Yolk sac infection in day-oldchicks (increased 1st week mortality)



Washing of hatching eggs!

A good solution for poor egg hygiene?

- Essential rules are hard to follow
- If done improperly → more problems in hatchery


Storage

- Usually, storage of the eggs prior to incubation is unavoidable.
- Not recommended to start incubation within 12h of arrival at hatchery
- The storage time and the temperature and relative humidity at which the eggs are stored are very important for the hatching result.
- Storing is not only in hatchery!

Upside down and hatchability

10 % eggs upside down = 1.2 % hatch of eggs set

Yoho et al., 2008

Upside down and hatchability

Manual setting

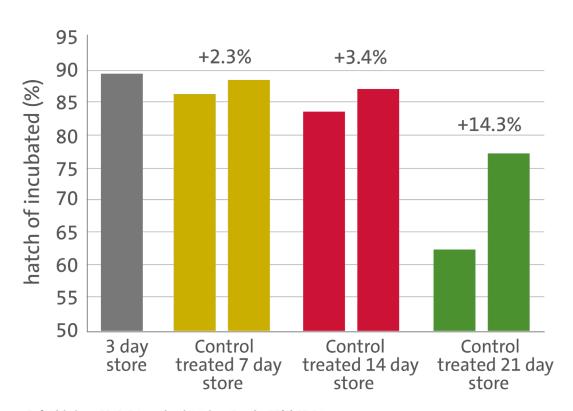
97.0%

Automatic setting

99.7%

2.7% x 0.2 x 52 million = 280,800 extra day old chicks per year

(Hatchery capacity 1 million chicks per week)

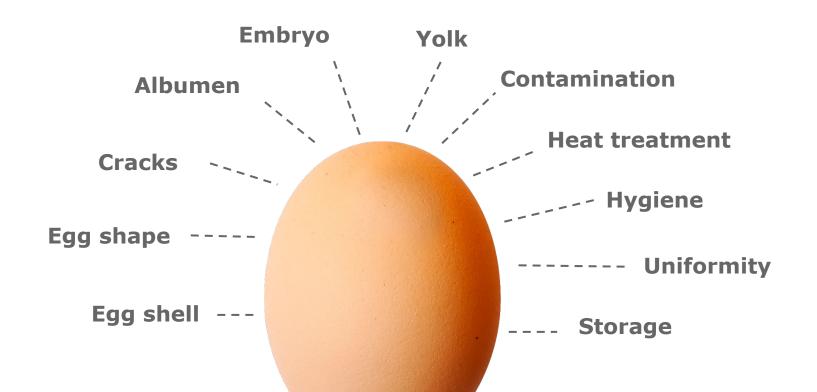


Heat treatment

- Aim is to bring embryo's to storage resistant stage or revitalize cells.
- Egg breakout from a sample is needed to monitor the embryo
- Can considerably reduce the negative impact of egg storage on hatchability.
- Navel quality will generally be much better
- The incubation time will also be closer to that of fresh eggs.

Heat treatment

Hatchery Talks Summary



Every egg is different to start

Checks for the best hatching egg

Thanks for watching!

- Webinar-replay + hand-out
- Knowledge section at our website

See you at our next webinar!

Royal Pas Reform

Pas Reform

@Pasreform

Royal Pas Reform

@Pasreform

Flickr.com/pasreform

Youtube.com/pasreformbv

