Hatchery Talks Egg weight loss

Hatchery Talks

Before we start ...

- Polls
- Questions in chat
- Webinar-replay + hand-out

Hatchery Talks

Content

- Why is it important to monitor egg weight loss
- Water regulation in the egg
- Influences on egg weight loss
- How to measure egg weight loss
- How to use egg weight loss
- Summary

Yes or no, Are you currently measuring egg weight loss in your hatchery?

Hatchery Talks Why is it important to monitor egg weight loss

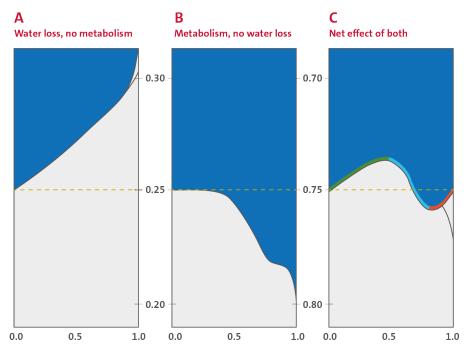
Good hatchery results

Why is it important?

- Routine monitoring for controlling incubator humidity
- Weight loss is essential for internal egg bal ance and for the formation of the air cell

Good hatchery results

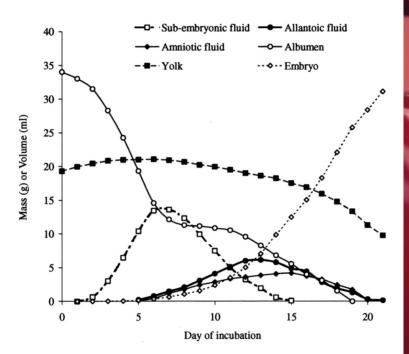
Why is it important?


- Eggs should lose 11-13 % of their initial weight during the first 18 days of incubation
- Suboptimal weight loss leads to
 - Increased embryonic mortality
 - Lower chick quality

Hatchery Talks Water regulation in the egg

Water regulation in the egg

Water movement


- Evaporation from egg to environment
- Internal movement between embryonic compartments in the egg

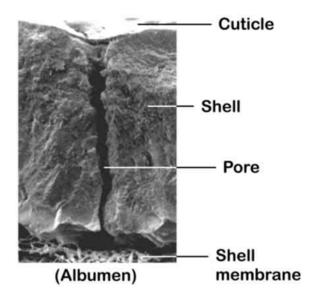
Incubation time (fraction)

Water regulation in the egg

Extra embryonic tissues

- Differences through incubation period.
- Moisture loss influences osmotic balance (Davis et al., 1988)
 - Low: excess albumen found
 - High: dehydration

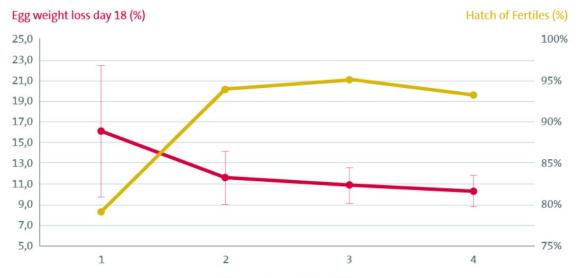
Hatchery Talks Influences on egg weight loss



Influences on egg weight loss

Eggshell

Main factors


- Conductance
 - Resistance of the eggshell to diff use water
- Porosity of the egg
 - more pores = more evaporation
- Water vapour pressure
 - Difference between RH within the egg (always 100%) and RH of ex ternal environment
- Cracks

Influences on egg weight loss

Eggshell mottling

Poor egg shell quality can lead to extreme weight loss in individual eggs (>20%)

Degree of eggshell mottling

Influences on egg weight loss

Incubation profile

Temperature

• Evaporation

Ventilation

Dehumidification

Relative Humidity

• Humidifiers

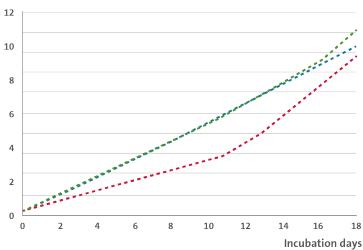
Control of relative humidity %

Setpoint!

Humidity is added by


- Moisture leaving the eggs
- Water from humidifiers
- Humid inlet air

Humidity is decreased by


Ventilation

Linear vs non-linear weightloss

weight loss profiles

Hatchery Talks How to measure egg weight loss

How?

- Mark and weigh a tray
 - Empty tray
 - Full tray before incubation
 - Full tray at transfer
- Random distribution in machine
 Or conciously not random!
- Standard procedure

How?

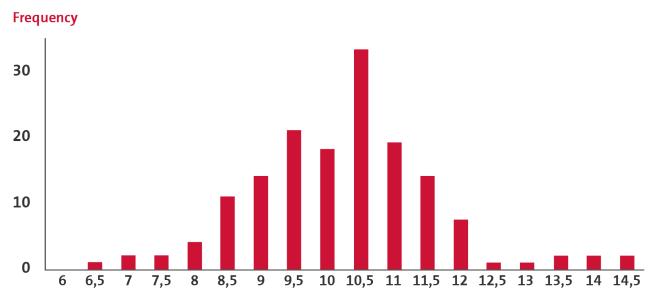
- Mark and weigh a tray
 - Empty tray
 - Full tray before incubation
 - Full tray at transfer

Calculation Weightloss =

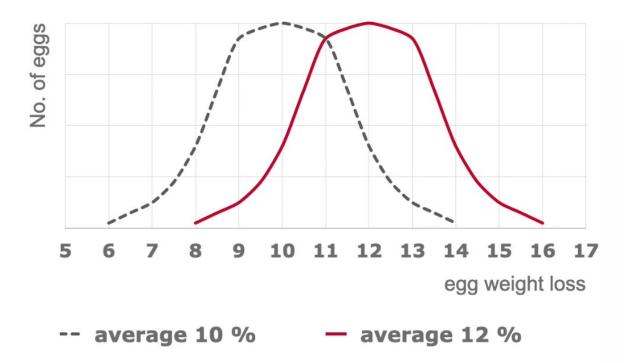
((weight of eggs before incubation – weight of eggs at transfer) / weight of eggs before incubation) x 100

When?

- On a routine basis:
 - To obtain hatchery specific reference data
 - As an 'early warning'


• In case of a problem:

- To find the cause and take correct action
- To judge the effect of an action


How many trays?

Example: individual egg weight loss differs! Optimum natural egg weight loss is $\pm 12\%$

Egg weight loss %

Weight loss per egg \rightarrow variation

Conceptual data

Recording form

To make a hatchery specific reference

tart date of incubation cycle lame of incubation program frolley fray						
rolley						
îray						
an ID code						
.gg iD-code						
Production date						
Breed						
Maternal age						
itorage days						
		_				
ncubation time: 0 days	0	0	0	0	0	0
Veight empty tray = WT						
Veight tray + eggs						
Veight eggs only = W0						
ncubation time: A days	A =	A =	A =	A =	A =	A =

Chick quality

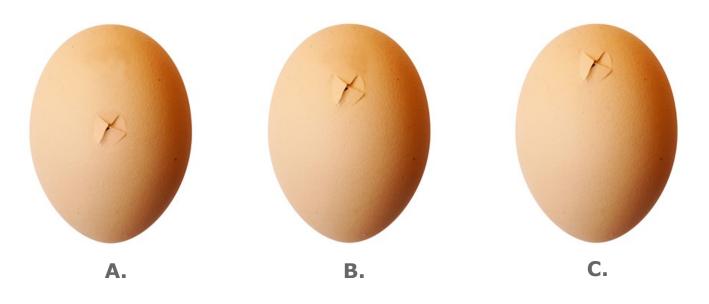
Too low weight loss

- Late hatch
- High late embryonic mortality (internal pip)
- Wet dead-In-shell chicks (albumen)

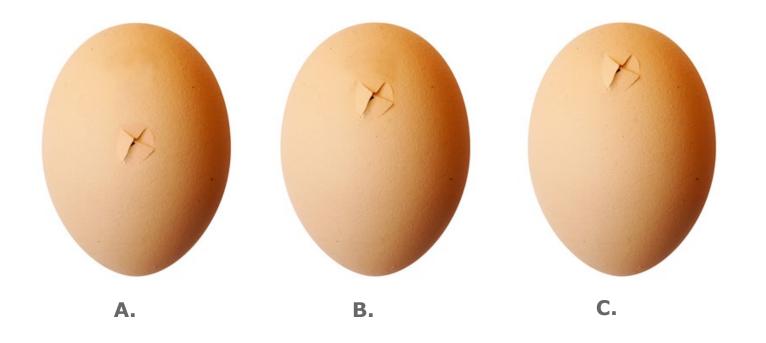
Too high weight loss

- Early hatch
- High number of pipped dead in shell
- Dehydrated chicks (long time in hatcher)

Chick yield


- Evaluate chick pulling time and compare chick quality
- Target is 66-68%

Low Chick Yield	High Chick Yield
Long incubation time	Too short incubation time
HIgh incubation temperature	Low incubation temperature
Low incubator humidity	High incubation humidity


Coutesy of Aviagen

Poll

Where should the pipping line be on the egg shell? Position A, B or C

Pipping height

Pipping height

In practise

Hatchery Talks How to use weight loss

How to use weight loss

What to do

Adjust incubation profile

Select a RH profile that allows for optimum weight loss with the lowest possible humidification

Hatchery Talks Summary

Hatchery Talks

There are many factors influencing egg weight loss

- Eggshell itself
- Environmental conditions

Signs of suboptimal weight loss

- Lower hatchability
- Lower chick quality

Egg weight loss data can be used to optimize incubation profile

Hatchery Talks

Thanks for watching!

- Webinar-replay + hand-out
- Knowledge section at our website

See you at our next webinar!